

Note: 000064

Overview

Number	000064
Description	ISO 6578 - LNG: Intermediate Parameter Rounding & Display
Version	2 from 11.07.2017
Status	Released to Customer
Language	EN
Responsible	Markus Seng
Product	BCG
Category	Advanced Development

Symptom

With this note, four advanced developments for MQCI LNG quantity conversions are delivered.

1. ISO 6578 LNG density $\text{RHO}_{|}$ calculation from composition is based on the revised Klosek McKinley model:

 $\mathsf{RHO}_{\mathsf{I}} = \mathsf{SUM}(\mathsf{x}_{\mathsf{j}} \times \mathsf{M}_{\mathsf{j}})) / (\mathsf{SUM}(\mathsf{x}_{\mathsf{j}} \times \mathsf{V}_{\mathsf{j}}) - \mathsf{V}_{\mathsf{C}})$

 $V_{c} = [k_{1} + (k_{2} - k_{1}) x_{N2} / 0.042 5] \times x_{CH4}$

Depending on the business contracts between buyers and sellers, the intermediate parameters k_1 , k_2 , V_i (i.e. V_i , $x_i \times V_j$, SUM($x_i \times V_j$)) and V_c shall be rounded before the final LNG density calculation (as defined in the printed ISO 6578 calculation example) or applied without intermediate rounding. The current QuantityWare MQCI implementation applies intermediate rounding of these parameters as suggested by the ISO 6578 example calculation and is extended with this note to also enable no intermediate rounding for an LNG conversion group density calculation.

Note: ASTM D4784 defines the revised Klosek McKinley model as follows:

 $RHO_{I} = SUM(x_{i} \times M_{i})) / (SUM(x_{i} \times V_{i}) - [k_{1} + (k_{2} - k_{1}) x_{N2} / 0.042 5] \times x_{CH4})$ i.e. without abbreviating the volume reduction term V_{c} .

2. ISO 6578 LNG density calculation is based on the revise Klosek McKinley model. Depending on the business contracts between buyers and sellers, the intermediate parameters k_1 , k_2 and SUM($x_i \times V_i$)

QuantityWare

(ASTM D4784 formula) / or V_c and SUM(x_i × V_i) (ISO 6578 formula) shall be printed in various business documents. The current QuantityWare MQCI implementation does not pass these parameters back to business applications via the SAP QCI and is enhanced with this note to do so.

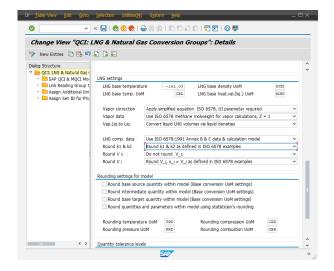
3. ISO 6578 defines vapor space correction calculations for masses and energies for LNG calculations. So far, an MQCI LNG conversion group can be configured to either apply such calculations or perform the calculation without vapor space corrections. Control via UI reading group parameters to turn the vapor space corrections off - independently from the conversion group vapor space calculation activation - is not available and is made available for a conversion group with this note.

4. ISO 6578 defines vapor space correction calculations for masses and energies for LNG calculations. Within the MQCI LNG conversion, it is also possible to convert an LNG liquid source volume at observed liquid LNG temperature to an alternate liquid LNG volume (at alternate LNG liquid temperature defined for the alternate LNG liquid UoM). Although such alternate values may only have a logistics relevance (never financial, since they <u>do not</u> contain the vapor mass), the calculation model allows the calculation of such alternate LNG liquid volumes after application of this note:

- either via the total mass (liquid mass plus vapor mass and inverted formula 3a/3b, as defined in ISO 6578) the alternate liquid volume then is the liquid volume that would be observed at that alternate liquid temperature in the tank at identical vapor conditions
- or via the two relevant LNG liquid densities, then considering only the LNG liquid mass, neglecting any tank vapor space mass.

With BCS 3.0, two new LNG template conversion groups (QUCA and QUCB) are delivered which demonstrate these new configuration options. These new template conversion groups are not part of this advanced development. If you apply this advanced development note on top of your BCS 10B CSP03 installation, you may proceed as described in the example configuration steps in the solution part of this note for your existing LNG conversion group configurations.

With BCS 3.0 CSP01, a third LNG template conversion group (QUCC) is delivered, which is configured with an additional rounding option for the intermediate parameters described under point 1. In addition, this template conversion group contains ISO 13443 conversion functions to calculate the higher heating value and Wobbe index at 60 °F and 14.696 PSI (metering and combustion reference conditions) from the conversion group reference conditions.

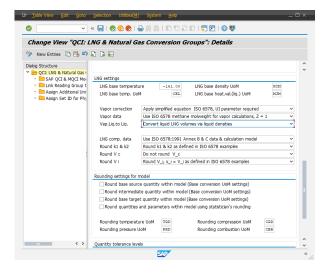

Cause

N/A

Solution

1. New LNG intermediate parameter rounding options:

2. Display of intermediate parameters in reading group:


	ters										_
Conv. Group	QUCA	MQCI L	ANG 1	L5/15°C	, REAL,	SD, COM	P.Q8 K1/2 VI				
UoM Group	QLN	QUANTI	TYW	ARE LNG	, SD						
Transactn. qty.		50	000	M3L	Base density						
Input Qty			_				ers for chemical	ls			_
rransactn. qty.		50	000	M3L	Therm, expan, coeff.						
					men	n, expa	i. coen.				
Result											
Parameter			с	Value		U	Addl.qty		J М	. 🎹 📃	
Heating value (Su	ip.,E/mass)			54.216		MJK	177903			2	
Wobbe Index				52.962		MJM	176573				
				18.362			2856331				
Molar mass LNG				0.0396			3014280				
Sum x_i * V_i							3067030			~	
Sum x_i * V_ k_1					36000						
Sum x_i * V_i				0.0004	41000		127467			~	

3. Control of tank vapor space via reading group parameters:

QC1 : Calculator for additional quantities •••••••••••••••••••••••••••••	Ø	×	« 🖯		🔗 😪	1 🖨 i	n na I	000	1) I 🜄 Z		9 🖳	
Calvalato parameters Conv. Group	QCI : Calcul	lator for	additi	iona	al qua	ntitie	? <i>5</i>					
Calvalato parameters Conv. Group	- Material 🔶	Poluco Dofi	ulte									
Conv. Group GOCA HQCI LMG 15/15*C, REAL, SD, COMP. QB K1/2 VI QUANTITYHARE LNG, SD Date 11.07.2017 13:38:86 Input Qty Add.parameters for chemicals Transactn. qty. 50000 MSL Base densty Therm. expan. Coeff. Parameter C Value U			suits									
UoM Group QUANTITYNARE LNC, SD Date 11.07.2017 13:38:56 Input Qty Add.parameters for chemicals Transactn. qty. 80000 M3L Base densty Therm. expan. coeff. Result 11.65.50 Parameter 143.50 LNG observed tamperature 143.50 CEL 1775035.030 CFC Vapor recovery (movement) ind. 1165.50 Result 12656331.124 CFT Vapour temperature (LNG) 110.000 Vapour temperature (UNG) 110.000 Vapour temperature (UNG) 110.000 Vapour temperature (UNG) 110.000	Calculation parameters	eters										-
Date 11.07.2017 13:38:56 Input Qty Add.parameters for chemicals Transactn. qty. E00000 Mail Result Therm. expan. coeff. Parameter C Value UIff Add.parameters for chemicals Base densfy Therm. expan. coeff. Parameter C Value UIff AddLety U M UNo observed temperature -1c3.50 CatL 175035.030 CFF Cat Vapor recovery (movement) ind. Image: CatL 1276573.5124 CFF Image: CatL 20142802.270 CAS Image: CatL 20142802.270 CAS Image: CatL 1274677.5520 Image: CatL Image: CatL 1274677.5520 Image: CatL	Conv. Group	QUCA	MQCI I	LNG	15/15°C	,REAL,	SD, COM	P.Q8 K1/2 '	νı			
Input Qty Add.parameters for chemicals Transactn. qty. 50000 H3L Base densty Therm. expan. coeff. Parameter C Value U III AddLqty LNG observed temperature -163.50 CEL Apply vapor cord. (tank dp) V 2856331.3124 CEL Result 1750733.124 CEL 1750733.124 CEL Vapor recovery (movement) nd. V 2856331.3124 CEL Apply vapor cord. (tank dp) V 2856331.3124 CEL Vapour temperature (LNG) 110.000 NS Vapour temperature (LNG) 110.000 KEX + V	UoM Group	QLN	QUANT	ITYW	ARE LNG	, SD						
Result Add.(ty U M Parameter C Value U M Add.(ty U M LNG observed temperature -163.50 CEI 1179036.030.07C ES Apply rapor coror, (tank dp) V 2565331.24 GEI ES ES <t< th=""><th></th><th></th><th></th><th></th><th></th><th>Add.p</th><th>paramet</th><th>ers for chemi</th><th>cals</th><th></th><th></th><th></th></t<>						Add.p	paramet	ers for chemi	cals			
Transactn. qty. 50000 M3L Base density Parameter C Value UIIII Addicty U IIII No observed temperature -143.50 CEL 1775035.030/CF IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Input Oty					Add.r	paramet	ers for chemi	cals			
Result U Value U III AddLqty U M III addLqty LNG observed tamperature -163.50 CEL 1775036.030.02C III Vapor recovery (movement) nd. - 1765739.124CFL III IIII Apply vapor cric, (rank dp) V 00000.000 M3 30142002.370CHS IIII Vapour temperature (UNG) - 118.00 CEL A 30670301.305CHT A	Transactn. gty.		5	0000	M3L	Base	density					
Parameter C Value UIII AddLqty U M III LN6 observed temperature						Ther	m. expa	n. coeff.				
Parameter C Value UIII AddLqty U M III LN6 observed temperature										_		
LNG observed temperature -163.50 CEL 1779303.030.CPC IM Vapor recovery (movement) ind. Im 176933.124CFL Im Im Apply vapor cris(raink dp) V D00000.000 M3 30142802.270CHS Im Receiving tank capacity 100000.000 M3 30142802.270CHS Im Im Vapour temperature (LNG) -118.00 KEA 3024290.274CHS Im Im	Result											
LNG observed temperature -163.50 CII 1175038.030.07C III Vapor recovery (movement) hd.	Parameter			с	Value		U	Addl.gty	U	м	***	
Apply vapor corr. (tank dip) Image: Constraint of the second	LNG observed te	mperature			-163.5	0	CEL	1779				
Receiving tank capacity 100000.000 ts 90142802.270 CMS Vapour temperature (LNG) 118.00 CBL A 30470031.305 CML A Vapour temperature (LNG) -110.00 KDA A 1274677.5552.01 A	Vapor recovery (movement)	ind.					1765	733.124 CFL			
Vapour temperature (LNG) -118.00 CEL × 30670301.309CMT × Vapour pressure (LNG) 110.000 KPA × 1274677.9556J0 ×	Apply vapor corr	(tank dip)		V				28563	319.431 CMO			
Vapour pressure (LNG) 110.000 KPA v 1274677.955 CJ0 🗌 v	Receiving tank o	apacity		1	100000	.000	мз	30142	802.270 CMS			
	Vapour tempera	ture (LNG)		1	-118.0	0	CEL A	30670	301.309 CMT		~	
	Vapour pressure	(LNG)			110.00	0	KPA 🗸	1274	677.955 GJO		~	
						<	>			< >		
						SAC	7					«

4. Control of alternate LNG liquid volume calculation:

Transport Reference

SAP Release	Transport	File Name	Notes
ECC600	QOIK900260	NOTE-00064-600.SAR	

Validity

SAP Release	From SP	To SP	In SP Shipment

ECC600

BCS 10B CSP03

BCS 3.0