
 

Fixed-Point Arithmetic Calculations | Page 1 of 23 

  

QuantityWare Working Paper 

Fixed-Point Arithmetic Calculations 
Implementation of measurement standards using fixed-point arithmetic 



 

Fixed-Point Arithmetic Calculations | Page 2 of 23 

Version History 

Version Date Description 

00 2009-09-22 Initial Version 

01 2017-08-02 Editorially revised and confirmed 

02 2021-09-24 Modern QW document style applied 

03 2023-11-01 Editorially revised and confirmed 

 

  



 

Fixed-Point Arithmetic Calculations | Page 3 of 23 

Contents 

1. Introduction ............................................................................................................................ 4 

2. Implementation of Numbers and Functions ...................................................................... 5 

2.1. Floating-Point Arithmetic ................................................................................................... 6 

2.2. Fixed-Point Arithmetic ....................................................................................................... 7 

3. ASTM D 1250-80 Implementation in Different Programming Languages ........................ 9 

3.1. Overview and Issues .......................................................................................................... 9 

3.2. Different Behaviour of Floating-Point Implementations .............................................. 10 

3.3. Consequences for Standard Implementations .............................................................. 19 

3.4. QuantityWare Implementation of ASTM D1250-80 ....................................................... 20 

4. Summary ............................................................................................................................... 22 

  



 

Fixed-Point Arithmetic Calculations | Page 4 of 23 

1. Introduction 

The results of oil, gas and chemical product quantity value calculations should be accurate and 

reproducible, allowing their use in business transactions, within a heterogeneous company landscape 

and across system boundaries. Such calculations should provide the same values under different 

environments as operating systems, programming languages, run time libraries, etc. 

Some advanced industry standards such as ASTM D1250-80 and ASTM D 1250-04/07/08/19 provide 

implementation instructions which must be followed step by step to fulfil such requirements. 

Despite the wealth of information available, difficulties, however, still arise when implementing older 

standard versions in specific environments. 

In this paper, targeted at technically oriented measurement experts and software architects, we detail 

some issues that arise from the utilization of different computing environments and how these different 

environments influence the comparability of results. 

A good place to start is with the implementations of the superseded, historic, but still globally used ASTM 

D1250-80 measurement standard (and all its various mutations) which are all based on a fixed-point 

arithmetic implementation instruction. 

We also provide a technical overview as to how QuantityWare was able to build an implementation of 

ASTM D1250-80 that provides identical results when comparing more the 60 million single calculations 

of our implementation with the results of an API C-code implementation. 

The detailed documentation of this impressive result is documented in a separate working paper, 

targeted towards business decision makers and legal authorities and available in the the QuantityWare 

Knowledge base. 

  

https://www.quantityware.com/wp-content/uploads/CP_QuantityWare_Comparison_ASTM_D1250_1980_C_ABAP.pdf


 

Fixed-Point Arithmetic Calculations | Page 5 of 23 

2. Implementation of Numbers and Functions 

To represent numbers, different types of numerical data type implementations are used, and of course 

each of them has its own arithmetic. 

For the implementation of current measurement standards three types of implementations are 

important: 

• Fixed-point arithmetic 

• Floating-point arithmetic single-precision 

• Floating-point arithmetic double-precision 

The accuracy and implementation details of any type depend on the CPU, arithmetic implementation, 

and software characteristics, such as the compiler, runtime libraries, etc. 

In addition, there are different implementation standards of data types and the applied arithmetic rules 

available, which will not always produce the same results under different dependencies as noted above. 

Decimal arithmetic (available in programming languages PL1, COBOL and SAP ABAP IV) has not yet been 

used in measurement standards calculations. 

  



 

Fixed-Point Arithmetic Calculations | Page 6 of 23 

2.1. Floating-Point Arithmetic 

Different standards for floating-point implementations are defined, but the most used is the IEEE 

Standard for Binary floating-point arithmetic (ANSI/IEEE Standard 754-1985) (see also 

http://en.wikipedia.org/wiki/IEEE_754 for details).  

It can also be found under the original reference number IEC 559:1989. 

Among all the varying implementations and formats of floating-point arithmetic, two are typically used in 

the implementation of oil & gas measurement standards:   

• Single-Precision (32-bit) 

• Double-Precision (64-bit) 

Although accuracy is dependent on the number of bits, the number value range is huge, owing to the 

possibility of exponential representation. 

In bulk-product orientated businesses, we do not have to worry about such ranges, or the position of a 

decimal point, as these details are handled by the floating-point data type implementation and the 

supported arithmetical operations. 

Such implementation can be realized inside a processor (CPU), a floating-point unit (FPU) or in a 

coprocessor. Some older hardware does not support floating-point at all – in this case, special software 

programs must be used for emulation. 

All the above already starts to indicate that different implementations will probably not necessarily 

provide exactly the same results. This includes the different data bases used in SAP implementations, as 

each database provider may show differing levels of accuracy when storing floating point numbers. 

However, the results from such systems are typically accurate enough with the relevant digits for bulk-

product orientated business (i.e., we deal with large quantity values) and after rounding, which is also 

usually defined in measurement standards, we should obtain the same results. Nevertheless, accuracy is 

(from a theoretical viewpoint) limited and correct rounding is a crucial part of any measurement 

standard implementation. Some standards do not require a special implementation of floating-point 

arithmetic, some do. For example, ASTM D 1250-04 requires a 64-bit floating-point implementation. 

Some standards recommend calculation results rounding, whereas others require it (e.g., ASTM D 1250-

04). By following a standards’ implementation instructions, the same results should always be attained, 

independent of the hard- or software used. 

http://en.wikipedia.org/wiki/IEEE_754


 

Fixed-Point Arithmetic Calculations | Page 7 of 23 

Floating-point representations are easier to use than fixed-point representations, because they can 

handle a wider dynamic range of numeric representations and do not require programmers to specify 

the number of digits after the decimal point. However, there are also difficulties in using floating-point 

representations. These must be taken in consideration when applying arithmetic operations, such as the 

comparison of two floating-point numbers. 

2.2. Fixed-Point Arithmetic 

Historically, before the floating-point arithmetic was introduced, the only way to develop software 

calculations was to use fixed-point arithmetic, which is a form of limited precision arithmetic. 

Fixed-point numbers have a fixed number of digits after the decimal point and sometimes also a fixed 

number of digits before the decimal point. 

This arithmetic is very fast and easy to install. 

However, a programmer has to “handle” the decimal point. 

In this document, we will discuss the fixed-point arithmetic based on an Integer format, as it is used (e.g.) 

in the implementation guide for ASTM D1250-80 (FORTRAN implementations are described for this 

standard and a widely-used implementation in C is available). 

The integer format may be numbers of 8, 16, 32 or 64 bit that have no decimal point and no defined 

decimal part. In addition, integer definitions can allow negative and positive values or only positive 

values (e.g., a counter or a pointer). 

With measurement standards implementations, we must deal with two integer data types (we will not 

consider counters, pointers, indexes, etc): 

Integer Data Type Number of bits Range (decimal) 

Short 16 -32768 through 32767 

Long 32 -2147483648 through 2147483647 

As noted above, the decimal point does not exist in these integer formats and in order to represent 

numbers that are typical for the oil & gas business processes, the programmer is forced to (e.g.) multiply 

a density of 1021.4 by 1000000 and store these values in the available integer format. All other values 

must be translated in a similar fashion. 



 

Fixed-Point Arithmetic Calculations | Page 8 of 23 

Example: a few common numbers of our business, aligned by the decimal point. 

Parameter Value Value aligned Value Integer 

Density (kg/m³) 1021.4 1021.400000 1021400000 

Density rel. to water 1.2345 0001.234500 0001234500 

Temperature 103.15 0103.150000 0103150000 

Therm. exp. coefficient 0.000789 0000.000789 0000000789 

Volume corr. factor 1.23456 0001.234560 0001234560 

As can be seen, we are already at the limit of 32-bit integer numbers’ significant digits. In the previous 

examples, we have a “virtual decimal point” always in the same position that makes it easy to handle 

mathematical operations, but we also can see that we waste digits. In this scenario, if we perform some 

simple calculations (arithmetical operations), we will run into the following issues: 

• We must manage decimal fractions 

• We must take care of the numbers’ ranges 

• We must shift the numbers in order to work with the maximum precision  

(i.e.: during a multiplication, the number of decimals behave like nn.nn x n.nnn = nnn.nnnnn) 

• At the end of the arithmetic operation chain, the programmer must bring the number back into 

the data type of the calling application. 

Thus, the programmer must shift, scale, truncate and round almost all numbers during the calculation to 

get the job done – an overheard that can have serious qualitative consequences during programming 

and maintenance thereafter. 

Differences in the implementation of the fixed-point arithmetic will lead to slightly different results, thus 

the programmer must depend on hardware and software to collaborate to obtain the same accurate 

results in different environments. Thus, without the following two major prerequisites, consistency is 

nigh-on impossible to achieve: 

• The standard must provide an implementation guideline 

• The programmer has to implement the procedures in a way to obtain the results as described in 

the standard in any environment 

  



 

Fixed-Point Arithmetic Calculations | Page 9 of 23 

3. ASTM D 1250-80 Implementation in Different 

Programming Languages 

3.1. Overview and Issues 

The ASTM D1250 standard has a long history.  

In 1980 ASTM D1250-80 was released, replacing the printed tables from 1952 with equations - this was a 

big step forward. However, at that time, the available hardware and software was not as mature as it is 

today, and the standard had to work on almost all platforms used within the industry. The only way to 

achieve this goal was to rely on fixed-point arithmetic operations for the provision of a generally 

compatible implementation procedure.  

The most suitable programming language available at that time for such an implementation was 

FORTRAN. 

Thus, FORTRAN and the fixed-point arithmetic (Integer data type) were used for the development of an 

abstract implementation procedure and an example implementation, which is described in: 

API MPMS Chapter 11.1. - 

Volume Correction Factors 

Volume X – Background, Development and Program Documentation 

The standard provides an extended description of the calculations, implementation procedures, test 

examples and coding in FORTRAN. 

Additionally, the American Petroleum Institute (API) then developed source code of the functions that 

represented the former tables from 1952 in the programming language C. These function source codes 

can be integrated in business process systems.  

At the beginning of the SAP IS-OIL development, SAP provided an interface [the QCI (Quantity 

Conversion Interface)] and a frame program for the API 1980 C codes. The frame program must be 

compiled and linked together with the API source codes. The resulting executable works with the SAP 

interface and uses the API table functions. The main challenge of this approach was, and still is, that an 



 

Fixed-Point Arithmetic Calculations | Page 10 of 23 

external executable does not fit into the SAP environment very well as serious security, performance and 

handling problems cannot be avoided. Thus, in S4/HANA systems, this approach is forbidden. 

QuantityWare implemented the original standard (FORTRAN) into the SAP language (ABAP IV) by using 

the 32-bit integer format, but the comparison with the API C codes showed differences in the last 

relevant digits of the results (densities and volume correction factors) for approximately 1 in every 100 

calculation results. 

QuantityWare investigated this issue in detail. Two reasons for these differences could be defined: 

• The C code implementation enhanced some of the original standard recommendations for the 

scaling of numbers to obtain more accurate (but not standard-conform) results.  

• Differences in the implementation of the available C compilers and the SAP implementation of 

the fixed-point arithmetic can occur 

Thus, the challenge we were presented with was how to handle the differences while obtaining the same 

results for both implementations. This will be explained in the following points. 

3.2. Different Behaviour of Floating-Point Implementations 

Even if operations such as the shifting and scaling of numbers are developed in a very careful manner 

for each implementation, it is not always possible to avoid different behaviour of an arithmetic 

operation, as different hardware- and operating- systems implement fixed-point arithmetic in different 

ways. 

The following questions must be answered before development can begin: 

• How will floating-point values be converted to fixed-point values and back? 

• How will the result of an operation be provided? Via rounding or truncating? 

(i.e., how do we avoid aborts and dumps in the calculation process)  

• Do we have to provide customizable tools for rounding? 

Examples of these questions will be shown in the following sections. 

  



 

Fixed-Point Arithmetic Calculations | Page 11 of 23 

3.2.1. Multiplication and Ranges 

This is easy to understand and important! Let’s assume we must multiply two numbers:  

e.g., C = A * B. 

A = 812.34 

B = 67.8904 

We calculate the “normal” way and use any appropriate calculator, or do it all manually: 

C = 55150.087536 

Now let’s try this in integer format. 

A) The first attempt: 

Firstly, we must get rid of the decimal point by via multiplication: 

A = A * 100 =  81234 

B = B * 10000  =  678901 

We are now ready for the multiplication: 

C = A * B = 81234 *678901 = 55150087536 

That looks fine and means C = 55150087536 / 1000000 = 55150.87536 

Wonderful! Where’s the problem? 

Remember the range of 32-bit floating-point numbers: 

-2147483648 through 2147483647. 

We have a result of 55150087536 and are therefore far outside the ranges. 

Limit of the range: 2147483647 

Result:   55150087536 



 

Fixed-Point Arithmetic Calculations | Page 12 of 23 

Our system cannot perform this calculation. Dependent on the installation, we could get an abort 

without any information, or we can get the sort of abort that we are familiar with from our SAP system – 

a short dump and some information, helpful for the programmer, but not for the business user 😊 

Although a good programmer could catch such an error (arithmetic exception), the calculation remains 

impossible. 

Measurement standards developers must consider such system behavior. 

So, we are stuck on 32-bit and still must present a solution. We must stay inside the supported 

mathematical ranges during the complete and typically complex calculation, thus we may have to accept 

a loss of accuracy. 

B) The second attempt - we try it “smarter”: 

We know that we cannot attain the maximum accuracy within our system limits, but we need a result 

that is as accurate as possible. There are ways in which to calculate the ranges and discover the most 

appropriate method however, in our example we will use an ad hoc approach to show how, in principle, 

the solution works: 

A = 812.34 

B = 67.8901 

We round B (0.001 accuracy level): 

A = 812.34 

B = 67.890 

Normalize A and B: 

A = A * 100  =  81234 

B = B * 1000 =  67890 

We are ready for the multiplication: 

C = A * B = 81234 * 67890 = 5514976260 

Which means: C = 5514976260 / 100000 = 55149.76260 



 

Fixed-Point Arithmetic Calculations | Page 13 of 23 

Unfortunately, the expected result (5514976260) is still outside of our upper range limit of 

2147483647. 

Limit of the range: 2147483647 

Result:   5514976260 

C) The third attempt, unfortunately, we must reduce the accuracy: 

We must round the input by one more digit. 

Of all possible methods, let’s try the following: 

A = 812.34 round to 0.1 -> 812.3 

B = 67.8901 round to 0.001 -> 67.890 

Normalize A and B: 

A = A * 10  =  8123 

B = B * 1000 =  67890 

We are ready for the multiplication: 

C = A * B = 8123 * 67890 = 551470470 

Which means: C = 551470470 / 10000 = 55147.0470 

Check the ranges: 

Range: 2147483647 

Result: 0551470470 

That works 😊 

  



 

Fixed-Point Arithmetic Calculations | Page 14 of 23 

To summarize:  

The calculation with maximum accuracy was outside of our possible ranges. 

We reduced the accuracy by rounding the input data and performed the calculation inside the 

supported ranges, but with less accuracy. 

Question:  

• Is our heuristic approach by rounding both input values the best one?  

• Or could we do it better and archive a higher accuracy? 

This very simple example shows how difficult it is to design a “simple” operation such as a “normal” 

multiplication required by our business, in fixed-point arithmetic.  

Correct result:  55150.087536 

Calculated result: 55147.0470 

  



 

Fixed-Point Arithmetic Calculations | Page 15 of 23 

3.2.2. Division and Rounding 

The division of two numbers is also affected by the limited accuracy of our data format; two major 

concerns are: 

• Integer data type ranges 

• Result rounding  

Let’s try the “simple” division 10 / 4. 

I think that we can all agree that the result should be 2.5. 

That’s true - but not in the integer world. 

Integer numbers have neither fractions nor decimal points. The arithmetic implementation must handle 

this and provide the expected result; thus, the result depends on the individual implementation of the 

integer arithmetic operation. 

Based on the integer data type definition, there are two ways to perform such a division: 

Truncate the result: 

• 10 / 4 = 2.5 -> 2 

Or round the result: 

• 10 / 4 = 2.5 -> 3 

  



 

Fixed-Point Arithmetic Calculations | Page 16 of 23 

We can manipulate that operation to obtain a higher accuracy by a simple scaling: 

C = A / B 

A = 10 

B = 4 

Now: 

C * 10 = A * 10 / B 

And we get: 

C * 10 = 10 * 10 / 4 = 25 

C * 10 = 25 stands for C = 2.5 

Division results are commonly rounded via the truncation method. This is exactly how the ASTM D1250-

80 implementation in FORTRAN was developed.  

The developer of the FORTRAN standard implementation used the special implementation of the fixed-

point arithmetic in FORTRAN. 

Here are two examples for rounding to “1” in integer when the result has been truncated as in the 

FORTRAN, and some C implementations: 

• 1.3 + 0.5 = 1.8 truncated to 1 

• 1.6 + 0.5 = 2.1 truncated to 2 

Now, what happens when the result has been rounded (as in SAP ABAP IV): 

• 1.3 + 0.5 = 1.8 rounded to 2 

• 1.6 + 0.5 = 2.1 rounded to 2 

The results are accurate. Division result rounding is a good and widespread practice. 

  



 

Fixed-Point Arithmetic Calculations | Page 17 of 23 

Rounding has been implemented in SAP ABAP IV and provides more accurate results than the truncation 

implemented in FORTRAN. It is possible for both languages to produce the same degree of accuracy and 

consistent results; however, this is generally dependent on the skills of the developer who writes the 

standard implementation. 

Each language has a unique design and therefore a different implementation of arithmetic operations. 

Let’s look at two examples of two different implementations for the same calculation: 

First example: SAP ABAP IV with results rounding: 

 

What we see is: 1.3 + 0.5 = 1.8 rounded to 2 

This is a very good way to handle fractions of integer operations however it cannot be used for rounding 

as performed by ASTM D1250-80 using FORTRAN. 

  



 

Fixed-Point Arithmetic Calculations | Page 18 of 23 

Second example: Microsoft C++ Visual Studio 6.0 (a different implementation of fixed-point arithmetic) 

 

We see: 1.3 + 0.5 = 1.8 truncated to 1 

This type of arithmetic is used for rounding in ASTM D1250-80 and of course for all other arithmetic 

operations. 

The standard ASTM D1250-80 is based on a very special fixed-point arithmetic implementation. These 

procedures cannot be transferred in an identical manner to any other environment, thus it does not 

matter what environment is used, “even” C code implementations will not work in the same way, as they 

too are dependent on their fixed-point arithmetic implementation. 

  



 

Fixed-Point Arithmetic Calculations | Page 19 of 23 

3.3. Consequences for Standard Implementations  

The previous sections show some of the differences that must be dealt with when implementing fixed-

point arithmetic operations. 

There are two key issues to be considered when implementing a standard: 

• How has the arithmetic been implemented in the system in which the standard has been 

developed, coupled with how are the standards’ procedures making use of that implementation? 

• How has the arithmetic been installed in the target system and how must it be used to achieve 

the same results required by the standard. 

As previously shown, fixed-point arithmetic as a basis for measurement standards implementation can 

be executed in diverse ways, varying between programming languages and operating systems. Thus, a 

measurement standards’ implementation can produce different calculation results when executed in 

different systems. The major points to consider are: 

• An implementation of a specific measurement standard may have been developed under 

complex conditions within a special development system 

• The procedures of the standard may make use of unique parts of special environments 

• The target environment may have a slightly different system environment, leading to differing 

results between the different systems 

For these reasons, we can safely say that standard selection and implementation is not as easy as it first 

appears! 

In this working paper, we have considered only two special features of the fixed-point arithmetic. It is not 

the goal of this document to describe how a standard implementation should be executed, but to show 

a few mathematical issues as examples of the difficulties involved. As shown by the two examples, such 

differences are real and can have an impact on the implementation of a standard –leading to differing 

results. Such differences may not appear very often and may be small, but they must be expected and 

can lead to serious business disruption. When considering the financial and reputational values at stake, 

this is not acceptable for any implementation that calculates bulk goods quantity values. 

  



 

Fixed-Point Arithmetic Calculations | Page 20 of 23 

3.4. QuantityWare Implementation of ASTM D1250-80 

Among the many standards implemented by QuantityWare in SAP ABAP is the legacy ASTM D1250-80. 

For quality assurance reasons, QuantityWare has also purchased a licensed version of the API c-codes 

(1980 and 2004 version). 

We analyzed the given FORTRAN implementation guidelines and developed an implementation based on 

these instructions. Since we know in detail how the SAP language ABAP IV has been implemented, our 

task was to find a way to implement this standard in SAP ABAP IV while achieving exactly the same 

results as the other available implementations, where the historic C implementation provided by the API 

was the “de facto” industry standard. 

The results of our effort are satisfactory. 

The first comparison we ran was across all petroleum tables, over the full supported ranges, between 

our implementation and the API C-code implementation. More than 60 million calculations were 

performed. We found approximately 60 0000 differences for the volume correction factors at the fifth 

decimal place when compared to the original implementation. 

We analyzed all differences step-by-step and found out that our implementation exactly reflected the 

FORTRAN standard. Eventually, the differences could be explained by advanced implementation 

procedures used within the c-code solution – owing to fixed point arithmetic issues like those described 

previously in this paper. 

We also found out that in the case of such differences, the FORTRAN standard did not achieve the best 

possible ‘physical’ accuracy whereas the API C-codes did. Thus, the implementation method for the ASTM 

D1250-80 VCF calculations is software dependent, based on the fixed-point arithmetic limitations. The 

current ASTM D1250-04 VCF implementation procedure relies on double precision floating-point 

arithmetic and avoids this dependency. 

We changed our implementation and ran all 60 million calculations again. 

Our “tweaked” SAP ABAP IV implementation now provided the same results as the legacy API C-codes 

implementation (when compiled with a Microsoft 32-bit C++ compiler). 

  



 

Fixed-Point Arithmetic Calculations | Page 21 of 23 

Since the API C codes are widely used within the industry, we decided to offer the modified version of 

our implementation as the default solution for the ASTM D1250-80 standard within our BCP product, 

thus supporting this “de facto” implementation. 

Finally, we also decided to solve some reoccurring issues which the industry has when using the ASTM 

D1250-80 standard: 

Many customers need to use the German rounding rules – these are supported in our standard BCP 

package. 

The API C implementation of standard ASTM D1250-80 follows the defined validity ranges and does not 

allow calculations outside of those ranges (an error is returned). This is not practicable when related to 

bulk goods industries’ business requirements – we allow our customers to customize density and 

temperature ranges in a controlled manner, with a flag set in the corresponding material movement 

document. 

  



 

Fixed-Point Arithmetic Calculations | Page 22 of 23 

4. Summary 

In this paper, we focused on issues arising from fixed point arithmetic software implementations with a 

limited data value range and how these issues influence the programming of petroleum measurement 

implementations. 

In detail, we used our findings and detailed analysis tools to build an SAP ABAP implementation of the 

ASTM D1250-80 API MPMS Chapter 11.1 volume correction factor calculation routines, which provides 

identical results when compared with a legacy API c-code implementation – for more than 60 million 

single calculations. 

Since there are many operating system, compiler, and hardware combinations in use within the industry, 

there are a correspondingly large number of ASTM D1250-80 API MPMS Chapter 11.1 volume correction 

factor calculation routine implementations in use. As we have shown, differences between such 

implementations will occur. 

ASTM D1250-04 has been available now since 2004. The oil and petrochemical industries are in a long 

transformation process towards this new and improved standard which eliminates fixed point arithmetic 

issues. Based on current observations, the transformation process could well take another 5 to 15 years 

(depending on e.g., legal requirements and national measurement standard adjustments). As ASTM 

D1250-80 is still in use, the findings documented in this paper can be relevant and helpful for 

organizations during this transition time. We hope that in some small way, we can also help accelerate 

the process for acceptance and business usage of modern, accurate and transparent measurement 

standards. 

QuantityWare offers implementations of all available ASTM D1250 versions to ensure a smooth and 

individual transition process for our customers – we understand the reasons for prolonged usage of 

expired standards and strive to accommodate our customers’ specific requirements within our standard 

solutions – BCP and BCG. 

  



 

Fixed-Point Arithmetic Calculations | Page 23 of 23 

Legal Notices 

© Copyright 2023 QuantityWare GmbH. All rights reserved. 

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services mentioned herein 

as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other 

countries all over the world. All other product and service names mentioned are the trademarks of their respective 

companies.  

Microsoft, Windows, SQL-Server, PowerPoint and Outlook are registered trademarks of Microsoft Corporation. 

These materials and the information therein are subject to change without notice. These materials are provided by 

the company QuantityWare GmbH for informational purposes only. There is no implied representation or warranty 

of any kind, and QuantityWare GmbH shall not be liable for errors or omissions with respect to the materials 

provided. The only warranties for the products and services of QuantityWare GmbH are those set forth in the 

express warranty statements accompanying such products and services, if any. No statement within this document 

should be construed as constituting an additional warranty. 


